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Routes to spatiotemporal chaos in the rheology of nhematogenic fluids
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With a view to understanding the “rheochaos” observed in recent experiments in a variety of orientable
fluids, we study numerically the equations of motion of the spatiotemporal evolution of the traceless symmetric
order parameter of a sheared nematogenic fluid. In particular we establish, by decisive numerical tests, that the
irregular oscillatory behavior seen in a region of parameter space where the nematic is not stably flow-aligning
is in fact spatiotemporal chaos. We outline the dynamical phase diagram of the model and study the route to the
chaotic state. We find that spatiotemporal chaos in this system sets in via a regipetiofemporal intermit-
tency with a power-law distribution of the widths of laminar regions, as in H. Chaté and P. Manneville, Phys.
Rev. Lett. 58, 112(1987). Further, the evolution of the histogram of band sizes shows a growing length scale
as one moves from the chaotic towards the flow-aligned phase. Finally we suggest possible experiments in
which one can observe the intriguing behaviors discussed here.
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I. INTRODUCTION der at high concentration play an important role in the non-
o . . . linear rheology of wormlike micelles, in particular in shear
The intriguing rheological behavior of solutions of en- y3ning transition and rheochaotic behavib®,11].
tangled wormlike micelles has been the subject of a large |, this paper we explore the dynamical phase diagram of
number of experimental and theoretical studies in recenghe model studied ii10,11], with emphasis on the route to
years [1,2]. These long, semiflexible cylindrical objects, spatiotemporal chaos. Our primary finding is summarized in
whose length distribution is not fixed by chemical synthesis,:ig. 1, which shows that this route is characterized by spa-
and can vary reversibly when subjected to changes in temyiotemporal intermittency. Before presenting our results in
perature, concentration, salinity, and flow, have radiimore detail, we cover some necessary background material.
~20-25 A, persistence lengths-150 A, and average  The application of large stresses and strains on wormlike
lengths up to several microns. Like polymers, they entanglgnicellar solutions can result in a variety of complex rheo-
above a critical concentration and show pronounced Visiogical behavior. Many dilute solutions of wormlike micelles

coelastic effects. However, unlike covalently bonded poly-exhibit a dramatic shear thickening behavior when sheared
mers, these “living polymers” can break and recombine re-

versibly in solutions, with profound consequences for stress
relaxation and rheology in the form of shear bandiBg5]

and rheological chao®—-12. Measurement§l3,14 report
monoexponential relaxation of the viscoelastic response ir
accordance with the Maxwell model of viscoelasticity. How-
ever, for wormlike micelles of CTAT7,15] at concentration -
1.35 wt. %, the fit to the Maxwell model is very poor, and
the Cole-Cole plot deviates from the semicircular behavior
expected in Maxwellian systems and shows an upturn at higt
frequencies. This deviation from Maxwellian behavior is
possibly due to the comparable values of time scales assoc
ated with reptatior(,) and reversible scissiofy,) in this
system unlike in other wormlike micellar systems where the
differences in the time scaleg <., lead to a “motional
averaging” effect. Further, in the concentrated regime, when
the mesh size of the entangled micellar network is shorter
than the persistence length of the micelles, orientational cor-

relations begin to appef). In fact the nature of viscoelastic ~ FIG. 1. (Color onling Space-time plotsspatial variation along

response and the development of long-range orientational ofPscissa and time along ordinpté the shear stress for=4.0 and
(& \¢=1.11 (time periodic, spatially homogenegusb) to (d), Ay

=1.12,1.13,1.18spatiotemporally intermittent(e) \,=1.22 (spa-
tiotemporally chaotig (f) and (g), A(=1.25 and 1.27chaotic to
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above a certain threshold rate, often followed by the onset ddively advected alignment tensor alone. They study the well-
a flow instability[16—18. Experiments have observed shear-established equations of hydrodynamics for a nematic order
banded flow in wormlike micellar solutions with formation parameter, with material constants corresponding to a situa-
of bands or slip layers of different microstructures havingtion where stable flow alignment is impossible. They con-
very different rheological propertigd,4,19-23. The shear sider only spatialljhomogeneoustateq36]; i.e., they study
banding transition is a transition between a homogeneous set of ordinary differential equations for the independent
and an inhomogeneous state of flow, the latter being characomponents of the nematic order parameter, evolving in the
terized by a separation of the fluid into macroscopic domainpresence of an imposed plane shear flow. They are thus not
or bands of high and low shear rates. It is associated with @ a position to explore the implications of the observed
stress platea(above a certain critical shear raggwhere the  chaos for shear banding.
shear stress versus shear rate curve is a plateauin the Other theoretical approaches aimed at explaining the
nonlinear mechanical response. rheological chaotic oscillations in a wormlike micellar fluid
More recently, rheological chaos or “rheochaos” has beeinclude those by Catest al. [8]. In the shear thickening
observed in experiments studying the nonlinear rheology ofegime Cate®t al. [8] propose a simple phenomenological
dilute entangled solutions of wormlike micelles formed by amodel for a fluid with memory and an underlying tendency
surfactant CTAT[6,7,15,24. Under controlled shear rate to form shear-banded flows, with only one degree of
conditions in the plateau regime, the shear stress and the filseedom—the shear stress. Recently Aradian and Cates
normal stress difference show oscillatory and more compli{37,38 have studied a spatially inhomogeneous extension of
cated, irregular time dependence. Analysis of the measuretthis model, with spatial variation in the vorticity direction.
time series shows the existence of a positive Lyapunov exWorking at a constant average strés$, they observe a rich
ponent and a finite noninteger correlation dimension charagspatiotemporal dynamics, mainly seen in what they call “flip
teristic of deterministic chaos. . flop shear bands"—a low and a high unstable shear band
Occurrence of sustained oscillations often of an irregulaeparated by an interface and periodically flipping into one
nature have also been reported in some other experiments @Rother. For a certain choice of parameters they observe ir-
complex fluids in shear flow. Salmoet al. [25,26 have  reqylar time-varying behavior, including spatiotemporal
observed sustained oscillations of the viscosity near the nofyechaos. As in our work, the key nonlinearitied 7,38
equilibrium, layering transition to the “onion” state in a Iyo- 4yise from nonlinearities in the constitutive relation, not from
tropic lamellar system consisting of close compact assemb%e inertial nonlinearities familiar from Navier-Stokes turbu-

of soft elastic spherel25-27. It has been conjectured that ' . :
the presence of oscillations in the viscosity is due to struclenniei 'A)‘(n fllmvsot;tak?tvrie sru[t\3/7,nSE\§NE t:a}[ththqt/ are able to fmﬁ
tural changes in the fluid, arising out of a competition be-COMPIEX Tlow behavior eve e € Sless versus shear-

tween an ordering mechanism that is driven by stress and fate curve Is monotonic. In gddmon, they find _rheochaos
slow textural evolution which destroys the stress induceVen in @ few-mode truncation where well-defined shear
ordered state. “Elastic turbulence” in highly elastic polymerPands cannot arise. - ,
solutions[28] and “director turbulence” in nematic liquid [N this paper we study a minimal model to explain the
Crysta's in Shear f|0V\[29,3q are two Other examp'es Of Comp|eX dynam|CS Of Ol’lentab|e f|UIdS, SUCh as Worm“ke mi-
highly irregular low-Reynolds-number flows in complex flu- celles subjected to shear flow. We show that the basic mecha-
ids. Both these phenomena are characterized by temporiism underlying such complex dynamical behavior can be
fluctuations and spatial disorder. Also worth noting is theunderstood by analyzing the relaxation equations of the
observation by Dasaat al. [31] of rheochaos in numerical alignment tensor of a nematogenic fluid, the underlying idea
studies of sheared hard-sphere Stokesian suspensions.  being that wormlike micelles being elongated objects will
Many complex fluids have nonlinear rheological constitu-have, especially when overlap is significant, a strong ten-
tive equations that cannot sustain a homogeneous steadygncy to align in the presence of shear. We study equations
flow. This material instability occurs when the stress versuof motion of the nematic order parameter in the passive ad-
strain-rate curve is nonmonotonic in nature, admitting mul-vection approximation—i.e., ignoring the effect of order pa-
tiple strain ratesy at a common stress. Particularly for rameter stresses on the flow profile which we take to be
shear flow, it has been shoW82] that homogeneous flow is plane Couette, incorporating spatial variation of the order
linearly unstable in a region where the incremental sheaparameter. We calculate experimentally relevant quantities—
viscosity is negative—i.edo/dy<0. The system then un- e.g., the shear stress and the first normal stress difference—
dergoes a separation into two coexisting macroscopic sheand show that, in a region of shear rates, the evolution of the
bands at different shear rates arranged so as to match ts&resses is spatiotemporally chaotic. Further, in this region
total imposed shear gradient. Systems where the dynamibe fluid is not homogeneously sheared but shows “dynamic
variableso or y are coupled to microstructural quantities shear banding”(banded flow with temporal evolution of
may admit many other possibilities—the flow may never beshear bandsA careful analysis of the space-time plots of the
rendered steady in time, or it may become spatially inhomoshear stress shows the presence of a large number of length
geneous even erratic or both. Fielding and Olmsted studgcales in the chaotic region of the phase space of which only
one such scenari®] in the context of shear thinning worm- a few dominant ones are selected as one approaches the
like micelles where the flow is coupled to the mean micellarboundary of the aligned phase. Finally we explore the routes
length. to the spatiotemporally chaotic state. The transition from a
Significantly, Grossoet al. [33] and Rienackeret al.  regular statéeither temporally periodic and spatially homo-
[34,35 find temporal rheochaos in the dynamics of the pasgeneous, or spatiotemporally periodio a spatiotemporally
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chaotic one occurs via a series of spatiotemporally intermithnematic order parameter. While properties specific to living
tent states. By calculating the dynamic structure factor of th@polymers might play an important role in their rheological
shear stress and the distribution of the sizes of laminar ddsehavior, the generality of our order parameter description
mains, we can distinguish this intermittent regime from theencourages us to think that we have captured an essential
spatiotemporally chaotic and the regular states occurring iimgredient for rheochaos. As we shall see, this approach leads
this model. Finally, we present a nonequilibrium phase diahaturally to terms nonlinear in the stress, absent in the usual
gram showing regions where spatiotemporally regular, interdS equations of motion, which lead ultimately to the chaos
mittent and chaotic phases are found. with which this paper is concerned. Referend&d,3§

The paper is organized as follows. In the next section wdound it necessary to modify the Johnson-Segalman equation
introduce the model and describe in detail the spatiotemporddy including terms nonlinear in the stress in order to produce
chaos that we observe, along with the routes to chaos. Wehaos.
then conclude with a summary and discussions of our results. We now discuss the relaxation equation of the alignment
Our main results on the spatiotemporal nature of rheochaagnsor characterizing the molecular orientation of a nematic
have appeared in an earlier, shorter artjdée]. liquid crystal in shear flow. These equations were derived by
various group$42—-45,47-5( using different formalisms re-
sulting in broadly similar though not in all cases identical
equations of motion. We work with the equationg 47,51,
so as to make contact with the recent stud&3 of purely
temporal chaos in the spatially homogeneous dynamics of
A. Model and methods nematic liquid crystals in flow. These authors have extended

Traditionally, complex rheological behaviors such as pla_their analysig 34,35 to include biaxially ordered steady and

teau in the stress versus shear-rate clibjeshear banding transient states. Their work has revealed a transition from a
[3-5], and “spurt’[39] have been understood through phe- kayaking-tumbling motion to a chaotic one via a sequence of

nomenological models for the dynamics of the stress such mbling and wagging states. Both intermittency and period

the Johnson-SegalmaidS [40,41] model, which produce Ol;\b“ng routes FO ]Elh?ij? have b(.aendfOLfmd.. ble obi
nonmonotonic constitutive relations. In such equations the hnema;cjogenlg_ kUI |_shcc;]mpr|_se o Or'irl[té‘e €o JleCtS’
stress evolves by relaxation or by coupling to the velocitySUch s rods or disks, with the orientation of tite particle

gradient. For example in the JS model the non—NeWtonial‘fJeHOted by the unit \.’eCt(.ﬁi' In the nematic phase thgre is.ar]
part of the shear stress evolves according to average preferred direction of these molecules, which distin-

guishes it from the isotropic phase where there is no such

preferred direction. The order parameter that measures such
apolar anisotropy is the traceless symmetric “alignment ten-

sor” or nematic order parameter

II. SPATIOTEMPORAL RHEOLOGICAL
OSCILLATIONS AND CHAOTIC DYNAMICS
IN A NEMATOGENIC FLUID

J
Eo- +u-Vo+olQ-ak]+[Q-ak] o=2ukx- To_lﬂ',

1

N
with a stress relaxation time,, an elastic modulug, and a Q,4r) = 12 (V I }5 ) Sr—-r) (2)
parametema (called the slip parametecontrolling the non- op Nio ath 3Tk ’

affine deformationu is the hydrodynamic velocity field and ) . , o

Q and « are the antisymmetric and symmetric parts of thet?u"t from_ the second mor_nent. o_f t_he or_lentatlorlal dls:trlbu-
rate-of-deformation tensor. A useful point of view, and onelion function. By construction, it is invariant under— -,

that unifies such phenomenological descriptions with dy-2nd vanishes when the are isotropically distributed.

namical models of ordering phenomena in condensed matter Since nematic fluids possess long-range directional order,
physics, is that such equations of motion for the stress ari'® Presence of spatial inhomogeneities would result in de-
not fundamental but are derived from the underlying dynamjormatlons of the dlrector field and he'nce cost elastic energy.
ics of analignment tensoor local nematic order parameter N 9éneral when the variable describing an ordered phase is
Q. Equations of motion for the latter are well establishedV@¥ing in space, the free-energy density will have terms
[42-50 in terms of microscopic mechani¢Boisson brack- quadratic inVQ. Stlatllc mechanical equilibrium fa@ corre-

ets and local thermodynamics, and naturally include bothSPONds to extremizing the Landau-de Gennes free-energy
relaxation and flow-coupling terms of essentially the sortfunctional

seen, e.g., in the JS model. The contribution of the order [A 2 c

parameter to the stress tensor is also unambiguous within ~ F[Q]= j d*| —Q:Q - \/jB(Q ‘Q):Q+—(Q:Q)2

such a framework, once the free-energy functioRaQ] 2 3 4

governingQ is specified. This approach is particularly ap- ry . T,

propriate when the system in question contains orientable +?VQ : VQ+EV Q- V-Qf, 3
entities, such as the elongated micelles of the experiments of

[6,7,15,24. Thus, not worrying about properties specific to awith phenomenological parametefs B, and C governing
wormlike micelle—e.g., the breakage and recombination othe bulk free-energy difference between isotropic and nem-
individual micelles—one can attempt to understand the propatic phases, anfl; andI’;, related to the Frank elastic con-
erties of the wormlike-micelle solution by treating it as an stants of the nematic phase. A macroscopically oriented nem-
orientable fluid and analyzing the equations of motion of theatic with axis i has Q=s(hn—1/3) (where | is the unit
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tensoj which defines the convention@calaj nematic order in the shear plane describing a tumbling mojidtkayaking
parametes. For A small enough but positivés has minima  wagging” (KW, a periodic orbit with the projection of the
ats=0 and ats=sy# 0. The minimum at=g; is lower than  main director in the shear plane describing a wagging mo-
the one as=0 whenA< A.=2B?/9C which corresponds to tion), and finally “complex”(C) characterized by compli-
the (mean-field isotropic-nematic transition. The functional cated motion of the alignment tensor. This includes periodic
F plays a key role in the dynamics &f as well. The equa- orbits composed of sequences of KT and KW motion and

tion of motion forQ is chaotic orbits characterized by a positive largest Lyapunov
exponent.
R +U-VQ=71G+(apr+ ajk-Q)st+ 2 -Q-Q - Q, A solution phase diagram based on the various in-plane
it and out-of-plane states fér=0 anda,; =0 is given in[35]. It

(4) is observed that,; # 0 gives similar result§12]. As control
) o parameters, we usg.=-(2/3)qa, related to the tumbling
where the subscript ST denotes symmetrization and trace regyefficient in Leslie-Ericksen theor§84,35 and the shear
moval. u is the hydrodynamic velocity fields=(1/2)[Vu rate y to study the phase behavior of this system.
+(Vu)T] and @ =(1/2)[Vu-(Vu)'] the shear-rate and vor- It is observed in experiments that the flow curighear
ticity tensors, respectively. The flow geometry imposed isstress versus strain ratef a wormlike micellar system in
plane Couette with velocity=yyX in theX direction, gradi-  shear flow has a rather large plateau region where banded
ent in they direction, and vorticity in the direction.7is @  flow is believed to occur, and a study of the dynamics of the
bare relaxation timeg, and e, are parameters related to flow traceless symmetric order paramet®r [Eq. (4)] for a
alignment, originating in molecular shap€s, the molecular  sheared nematogenic system that allows spatial variation is
field conjugate taQ, is given by likely to capture this feature. As we shall see later the shear
. _ = ) banding observed in such systems is dynamic in nature and
=~ (6FIQ)st=-[AQ - VEB(Q - Q)57+ CQQ:Q] is an important element in the spatiotemporal rheochaos we
+IV2Q+THVV -Q)gr (5  observe.
Hereafter we express the equations in the orthonormalized

to th_e Iowest order in a series expansiqn in power¥Qf. basis as in Eq(6). As in [34,35, we rescale time by the
SinceQ is a traceless and symmetric second rank3  |inearizeq relaxation time/A. at the mean-field isotropic-

tensor, it has five independent components. Accordinglynematic transition an@ as well by its magnitude at that
when the equation of motion of the alignment tensor is aPiransition. We have set,=0 in our analysis as it seems to
propriately spaled, itis possible to express it in the orthonory e jittle effect on the dynamical behavior of the system
malized basis [12,34,39 in the parameter range studied. Further, we
Q=3 aT, chooseA=0 throughout, to make a correspondence to the
i v ordinary differential equatiofODE) studies of34,35. This
places the system well in the nematic phase at zero shear, in

T =325 fact at the limit of metastability of the isotropic phase. Dis-
0= V3/2(22)s, tances are nondimensionalized by the diffusion length con-
— structed out ofi’; and 7/A.. The ratiol',/T"; is therefore a
T1=V12(XX - yy), free parameter which we have set to unity in our study.
_ The resulting equations are then numerically integrated
T, =V2(XY)sT, using a fourth-order Runge-Kutta scheme with a fixed time
step (At=0.00). For all the results quoted here a symme-
T:=12(%2)st, trized form of the finite-difference scheme involving nearest
neighbors is used to calculate the gradient terms. Thus
T4=\2(9Dsr, (®) oo fien* fioa = 2f
and study the equations of motion of each of the components ' (Ax)? ’
a, k=0,1,...,4{34,35, projected out.
It has been observed in the absence of spatial variation fig—fig
that depending on the model parameters entering the equa- Vii= ToAx (7)

tions, the order parameter equations can have different char-

acteristic orbitg34,35. Possible in-plane states, where, asWe have checked that our results are not changed if smaller
the name suggests, the director is in the plane of flow detewalues ofAt are used. We have further checked that the re-
mined by the direction of the flow and its gradient, and thesults do not change if the grid spacing is changes, Ax is
order parameter componenss, a,=0 are “tumbling” (T,  decreasedand more neighbors to the left and right of a
in-plane tumbling of the alignment tengpfwagging” (W,  particular site in question are used to calculate the derivative.
in-plane wagging and “aligning” (A, in-plane flow align- This gives us confidence that the results quoted here do re-
men) states. Out-of-plane solutions, characterized by nonflect the behavior of a continuum theory and are not artifacts
zero values ofb; anda,, observed are “kayaking tumbling” of the numerical procedure used. We use boundary condi-
(KT, a periodic orbit with the projection of the main director tions with the director being normal to the walls. With this,
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we discard the first & 10° time steps to avoid any possibly e
transient behavior. We monitor the time evolution of the sys- ~ °° \ 09 \
tem for the next 5 1P time steps(i.e., t=5000, recording

configurations after every $®teps. We have carried out the
study with system sizes ranging froio¥ 100 toL =5000.

Further, we calculate the contribution of the alignment
tensor to the deviatoric stres§35,53-53 o°P«q,G

-a,(Q-G)gr where G, defined in Eq.(5), is the nematic 3 o8 0 08 iy ;j s 9 05 ('8
molecular field, and the total deviatoric stresef&” plus the S \ A

bare viscous stress. Since the latter is a constant within the  os e 05 \
passive advection approximation, we can study the rheology 0 e 0 na
by looking ate°P alone. We are aware of the importance of B S v Rl oo 9 0% @gTe
allowing the velocity profile to alter in response to the 12 12

stresses produced by the order parameter field, and this i
currently under study56]. 1 1
While generating the results for the time-series analysis 3 G = N
X X . ag(xty) o
for the Lyapunov spectrum, we run the simulation untill
=20000, for anL=5000 sized system, recording data at F|G. 2. Plots showingay(x,ty) Vs a;(x,to) (left pane) and
space points at intervals 6 10. We monitor the space-time ay(x,,t) vs a;(xo,t) (right panel for periodic [(a),(e)], chaotic
evolution of the shear stregthe xy component of the devia- [(b),(f)], (C—A) [(c),(9)], and aligned(d),(h)] regimes.
toric stresso®P) (referred to ag.,) and the first and second
normal stress differencés,— 2, andX,, -2, respectively. curve corresponding to a limit cycle is seen }t=1.27,
while at\,=1.3 (corresponding to th€ region of the phase

B. Results and discussion spaceg it is space filling. At\,=1.35, as one approaches the
_ _ _ region where the director aligns with the flow the points
1. Phase behavior and dynamic shear banding reduce to those on a line and eventually in the aligning re-

In view of prior work on the observation of chaos in the 9ime (A\=1.363 where the director has already aligned with
local equations of motion of the alignment tengspatially ~ the flow it is represented by a point. This assures us that the
homogeneous version of E@l)] by Rienackeet al.[34,35 local dynamics in the spatially extended case is similar to
we address the following question: Is the phase diagiam that of the ODE’s 034,35
the y-\, plane affected by allowing spatial variation of the =~ We also construct the spatial analogues of these portraits;
order parameter? We answer this question in the affirmative.e., we allow the system to evolve until a sufficiently long
and show that theC region of the phase diagram of time (say,tp) and then record the spatial series. Again we get
Rienackeret al.[34,35 corresponding to “complex” or cha- @ limit cycle in theT region of[ 34,35, followed by a space-
otic orbitsbroadensupon incorporating the spatial degrees offilling curve in the C region. As we go from the chaotic
freedom. In other words, there exist parameter ranges whetewards the aligning regime, the points arrange themselves
the spatially homogeneous system is not chaotic, but chad¥ a line, and finally in the aligned regime one only obtains
sets in once inhomogeneity is allowed. A result of particulard point, corresponding to a spatially uniform state. This is
interest is the observation of “spatiotemporally intermittent”shown in the left panel for Fig. 2. One should note here that
(STI) states in a certain range of parametensroutefrom  the T regime here corresponds to spatiotemporally periodic
the regular to the spatiotemporally chaotic regimes. Such bestates whereas in other regions of parameter space one does
havior is by definition not accessible in the evolution equa-Observe states that are temporally periodic but spatially ho-
tions of the spatially homogeneous alignment tensor studiethogeneougFig. 1(@)] and for such states the local phase
in [34,35. It would be of interest to find chaotic regimes
where only two of the five independent componentQare
nonzero. Since the number of degrees of freedom per space
point would then be 2, such chaos would clearly be a conse-
quence of spatial coupling. We have not located such a re-
gime so far.

Local phase portraitforbits obtained when various pairs
of order parameter components are plotted against each
othep illustrate the chaotic or orderly nature of the on-site
dynamics. Shown in the right panels of Fig. 2 are the local
phase portrait$a; vs ag) for a particular poini, for various
values of the tumbling parametgg, obtained by holding the
shear rate fixed ag=3.5. We have checked that the character
of the phase portrait remains intact upon going from one FIG. 3. (Color online Space-time behavior of the shear stress in
space point to another though in the chaotic regime there ithe chaotic regimey=3.678 and\,=1.25. Slice taken from a sys-
no phase coherence between two such portraits. A closadm of sizeL =5000.

021707-5



DAS et al. PHYSICAL REVIEW E 71, 021707(2009

200

600

1000 50 y 150 250
FIG. 4. (Color online Space-time behavidsurface plotsof the ) ) .
shear stress in the chaotic to aligning regimes4.05 and\, FIG. 6. (Color online Space-time evolution of the shear stress
=1.25. Slice taken from a system of size5000. showing coexistence of different dynamical regimesyat3.9, A

=1.12.
\?v%rttjzgltbgogrggmn;ir:ggn(t)? bsep Ztlglo\slsgl'agfrceat a fixed t'meotic state from stable flow alignment, the bands become
We now turn to the detailed spatiotempc;ral structure of "O'€ persistent in time and larger in spatial extent as shown

the phase diagram of this system. We find many interestin ) I\:/\I/% Pfa.lve computed the distribution of band sizes or spatial
phases including spatiotemporally chaotic states Withabroa,dStress drons” e?n d looked for the presence of dom?nant
distribution of length scaleFigs. 1e) and g, spatiotempo- ength scalgs in the system in order tg obtain a better under-
rally irregular states in which a few length scales are picked gt ; Y

up by the systenjFigs. 1f), 1(g), and 4, a flow aligned _standmg of the dlsorderl_y structure of the'shear bands as seen
phase[Fig. 1(h)] and also regular staté®) showing period- " Fig. 3 and compared it with the behavior seen close to the
icity in both in time and spacéFig. 5) or that are periodic in phase lbo%m_daWF'gl- 4. AnOtth(fj(ljmporta_ntj_re_aso# for 'Sl;]CT)
time and homogeneous in spaiféig. 1(a)]. In addition to an analysis is to rule out any hidden periodicity that might be
these states we find the presence oi‘ STI él[zfthys 1b) and present in the space-time profiles of shear stress as shown in
1(0)].' In regions of parameter space we_have aIsp _obsery elélg'i'ffé “stress drop” calculation is outlined below. At a given
spatially and tempo_rally ordered d_omams coexisting wr[htime (say,t), we define a threshollq,, a litle above the
patches characteristic of STI stat¢sg. 6). The parameter lobal mean(S,,.). .. and map the s a%/ial confiquration to a
values at which these are seen correspond well with thos® _ xy/y NG Map P _ g

obtained from the phase diagram[6#,35. space-time array of +I3,, =sgn(X,,~2o,). Figure 7 shows

Let us now focus on the parameter region labeledr  the histogram of the spatial_length of intervqls corrt_—zsponding

“complex” in [34,35, where we find spatiotemporal chaos. to the +state, for the chaotic and the chaotic to aligni®y
This regime is characterized by the dynamic instability of—A) regimes. We have considered configurations extending
shear bands as seen in Fig. 3 which shows several distinover L=2500 spatial points, and the statistics is summed

events, such as the persistence, movement, and abrupt disayer configurations sampled at 5000 tin{es., i=1,5000.
pearance of shear bands. It is found that the typical length

scale at which banding occurs is a fraction of the system size, 62X 10° x 10°
though it follows a broad distribution. As one moves closer e
to the phase boundary separating the spatiotemporally cha- 4 15
e 2
=
e e e 0
N = 0 30 60 60
== T o @
—_—— +
p— zZ
L= ’
- ————
— 1
150p=—=
—— 0 0
E== 0 30 i 60 0 30 i 60
200 === ) Ay —
50 100 y 150 200 v

FIG. 7. (Color onling Spatial distribution of “stress drop$tor-
FIG. 5. (Color online The space-time correlation function in a responding to residence intervals in which the shear stress is above
regime which is both spatially and temporally periodic=3.4, \ a thresholdX,,=0.8 in the chaotic(a) and C— A (b),(c),(d) re-
=1.29.

gimes.y=4.0 and\,=1.22(a),1.24(b),1.25(c), 1.27(d).
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(S}

As expected, the distribution of band lengths in the spa-
tiotemporally chaotic regime is fairly broad and roughly ex- o
ponential in shape, whereas as one approaches the aligning 4 ° o"85:92 log 1oLy + 52705
regime, the distribution is peaked about a few dominant

length scales. Also, note that as one passes from the chaotic 23

to the chaotic-to-aligningC— A) state, the dominant length Z;:_>

scale associated with the shear bands increases. g2
2. Route to the spatiotemporally chaotic state 1

We now monitor the approach to the spatiotemporally
chaotic state as a function of the tumbling paramajgrfor %
a fixed value ofy (=3.8). We observe a sequence of states. At

low A (1.0), the shear stress is periodic in time and homo- FIG. 8. Decay of the distribution of laminar domains at the

geneous n spac_e, Fig(a. As We.|ncrease>\k, we come. onset of the spatiotemporal intermittent regirrepresented by
across states which are both spatially and temporally disor:

. " ; : circles on a log-log scale. The solid line is a power-law fit to the
dered,[F_lgs. 1(b) and 1c)] consisting of propagating distur- 4.2 with an exponentcr=1.86+0.05.
bances in a background of highly irregular local structures,

which resemble geometric patterns seen in probabilistic cel- . . . :
lular automata[57]. The borders of the ordered regions nents at the onset of spatiotemporal intermittency in coupled

evolve like fronts towards each other until this region even—c'rcIe map latticeq62] and in experimental systenig4]

tually disappears in the chaotic background. These states af im that this transition indeed falls in the universality class
typical of what is known as ST|58—60,62 .Indeed it is O directed percolation. Our aim in this context is to macro-
suggested60,65 that the transition to fL;IIy developéd spa- scopically characterize the disordered structures in the spa-
tiotemporal c,haos generally occurs via this admixture 011|otemporallymtermlttent state in terms of the distribution of

complex irregular structurdgigh shear stre$sntermittently the W'dt.hs of the laminar domains and s_tudy the quglltanve
present with more regular low shear regions. In contrast ggonnection betwg:en STl and DP. Accordingly, following the
low-dimensional systems where intermittency is restricted tdanalyas' n .Ch"’.‘te and Ma}nnewljs&ﬁﬂ we study the de(_:ay
temporal behavior, STI manifests itself as a sustained regim f the distribution of laminar domains at the onset of inter-
where coherent-regular and disordered-chaotic domains copency af‘d far away from this onset. At each time step, the
exist and evolve in space and time. Earlier studies of thé$,pat|al series of the shear stress values are scanned, and the

onset of spatiotemporal chafs8—63 suggest a relation to widths Of. the laminar regiqn@regions for which the spatial
directed percolatiofiDP). Evidence for DP-like behavior in grad!ent IS Ie;s than.a sufﬁuently small va)lqaee measured
spatiotemporal intermittency mostly comes from studies oiand m_serted_ Into a h'St_ngam: This Process Is the_n cumula_ted
coupled map latticesCML) [62]. Such processes are mod- over time, giving the distribution of laminar domains. Previ-

eled as a probabilistic cellular automaton with two states pePus studies have found that at the onset of spatiotemporal

site, inactive and active, corresponding respectively to thdhtermittency, this distribution has a power-law deajth a

laminar and chaotic domains in the case of STI. Studies find©We" ranging from 151t 2.0 n CML studlé_§8] and ex-

that in the STI regime, a lamingfinactive site becomes perlm_ents[66] and_3.15 in a variant of the S_vwft-Hohenberg
chaotic(active at a particular time only if at least one of its equ?tlf)g[GS]), VV\(/h"? %Way _fr(_)lm tl?ehon_set,ln has an kexpto-
neighbors was chaotic at an earlier time, there being no spor?—en lal decay. YVe 1ind a simrar behavior. In our work, at a

taneous creation of disordered-chaotic sites. Hence a disorr(_epresentatlve p0|r{ty;3.9,kk:1.;16 at the' onset of inter-
ittency, the distribution of laminar domains has a power-

dered site can either relax spontaneously to its laminar sta ; .

or contaminate its neighbors. This feature is analogous tifW decay(Fig. 8), with an exponent of 1.86 and a standard
directed percolation, and one consequence of this picture is
the presence of an absorbing state: in STI studies of CML's,
once all the sites relax spontaneously to the laminar state, the
system gets trapped in this state forever; thus, the laminar
state in STI corresponds to an absorbing state in DP. This
analogy predicts that STI should show critical behavior simi-
lar to that associated with DP—power-law growth of chaotic
domains, and characteristic static and spreading exponents.
There is however still no uniformity of opinion on whether
spatiotemporal intermittency belongs to the same universal-
ity class as DP as characterized by the critical exponents of
the DP class. Some studies of coupled map latt{&,
partial differential equation§PDE’s) [65,67] and experi-
ments[66] suggest that, though the critical behavior in STlis  FIG. 9. Decay of the distribution of laminar domains away from
visually similar to DP, the exponents measured in STI are nothe above-mentioned onset and well within the STI reginepre-
universal. Other investigations that have evaluated the expaented by circléson a semilogarithmic scale.

log Ly 2 0

150
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FIG. 10. (Color online Pseudocolor plot of the dynamic struc- FIG. 12. (Color onling Dynamic structure factor in th€ — A
ture factorS(ky, w) in the “STI" (spatiotemporally intermittente- regime. The system has almost relaxed to a steady state in time, and
gime. Color at any point- logarithm (to base 1D of the value of  spatially there are large domains that are flow aligned.
S(ky,w) at that point.

o ] . Finally, we present the phase diagram coming out of the
deviation from the data of 0.05. Away from this onset  previous analysis as in Fig. 13. The phase diagram was cal-
=4.0\=1.13, the decay is close to exponential as evidentcylated by monitoring the shear-stress profile as well as vari-
from Fig. 9. ous components of the nematic order paramgtsrthey are

Another way of characterizing the time evolution of the strikingly different for the different phases, which is also
coherent and disorderly regions in the spatiotemporally interhorne out by the difference in the corresponding dynamic

mittent states of Figs. () and Xc) is to calculate the dy- structure factorsas a function of the shear rafeand the
namical structure factor for the shear stress. Figure 10 show§mbling parametex,.

the dynamic structure factor characteristic of this regime.
When the system is in the flow-aligned regiifigx, ) has a
peak atk=0 andw=0. On the other hand, in the spatiotem-
porally intermittent state, the dominant weight ¥k, o) is

on lines ofwor £k, impl_ying disturbances With a characteris- In studying dynamics of spatiotemporal systef68], one
tic speed (.)f propagation. The_ front velocny_of the Ce”.UIar'.needs to establish whether the system is truly in a spatiotem-
autpmata—llke patterns seen in the space time pIots_, in thi orally chaotic regime or can be described by a model with
regime can be calculated f“’”? the slope of .these. lines. | nly a few(dominan} independent modes. So from the mul-
Figs. 1d) andf 1e), ttt:]e sgstet_m ,'[S In tge tchhaotll_c regime. .AS tivariate time-series generated by such systems, one tries to
We pass oln rotm te chaotic owatr s eFalgnlr;g reg'mecompute guantities analogous to the invariant measures used
Torg trﬁgu ﬁr N rgc udres are seen t(') levth ‘gtS. j(d) an to characterize low-dimensional chaos. However, true spa-
(g)],. € shear bands grow In spatial extent and are morsgotemporal chaos corresponds to spatially high-dimensional
. > : . ttractors, with dimension growing with the system'’s spatial
n thg: flow-aligned regime. F|gures.1l and 12 shovy th'e dy'extent, and the estimation of invariants such as the correla-
namical structure factor in the spatiotemporally periodic re-
gime and close to the chaotic-aligning phase boundary, re-
spectively.

3. Lyapunov structure of the chaotic state

Next we try to characterize the chaotic states in our study.

-2

FIG. 13. (Color onling Phase diagram of the system in thevs
v plane, showing regular, i.e., periodic in time and either periodic or
FIG. 11. (Color online Dynamic structure factor in the spa- homogeneous in spadd), chaotic (C), aligning (A), and spa-
tiotemporally periodic regime. The peridicity in time and space istiotemporally intermitten{STI) regimes. Note the reentrant chaotic
borne out by the straight lines parallel to the frequency and wavebehavior as a function ofy in a narrow region ofA, and as a
vector axes, respectively. function of \ for y<3.6.
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tion dimension can be quite problematic. Indeed we find that 3 ] 60 o

the chaos that we observe is quite high dimensi¢aabed- - A & | E *«*"*‘”
ding dimension[69,70 m=10). A reliable estimate of the "5 °¢°° a0 °°°° 0z #
correlation dimensions can be made only from a data train so °°¢° °°°° *

long as to require prohibitively large computational times to °o°°°5 S % 5 10 s 00** R
generate. N N N,

An alternative approach is to study the Lyapunov spec-
trum (LS). For a discreteN-dimensional dynamical system, FIG. 14. Sum of positive Lyapunov expone(ieft pane), num-
there existN Lyapunov exponents corresponding to the rateger of positive Lyapunov exponentsiiddle panel, and the largest
of expansion and/or contraction of nearby orbits in the tanlyapunov exponenfright panej as functions of subsystem sikg,
gent space in each dimension. The LS is then the collectiofPr ¥=3.678,A\=1.25. Embedding dimension for the time series of
of all the N Lyapunov exponents;, i=1:N, arranged in €ach space point is 10,=101; see text
decreasing order. The LS is very useful in the characteriza-
tion of a chaotic attractor. Useful quantities that can be Calith Lyapunov exponeri; for the subsystem of sizh, lies
culated from the LS are the number of positive Lyapunov,

o between theth and(i +1)th Lyapunov exponent of the sub-
exponentsN,, and sum of the positive Lyapunov exponents system of sizé\g+ 1. A direct consequence of this property is

2\, In fact the sum of the positive Lyapunov exponentspay with increasing subsystem siig the largest Lyapunov
provides an upper bound for the so-called Kolmogorov-Sinagyponent will also increase, asymptotically approaching its
entropyh which quantifies the mean rate of growth of uncer-yajue corresponding to the case when the subsystem size is
tainty in a system subjected to small perturbations. In many the order of the system size. This trend is clearly seen in
cases,h is well approximated by the surl, [71]. Both Fig. 140b).
these quantities have been found to scale extensively with
system size in spatiotemporally chaotic systems. For dy-
namical systems with only a few effective degrees of free- C. Conclusions
dom, it is straightforward to compute the LS. However, for
extended systems with a large number of degrees of freedom, In summary, we have proposed a mechanism by which
even a few hundred, it runs into severe difficulties because afne might explain the chaotic and irregular rheological re-
the inordinately large computing time and memory space response of soft materials in shear flow, wormlike micelles in
quired. In such situations it is important to make use of techparticular. The main idea brought out in this paper is that the
niques that derive information about the whole system bycoupling of orientational degrees of freedom in a complex
analyzing comparatively small systems with exactly thefluid with hydrodynamic flow can lead to spatiotemporal
same dynamical behavidi72-74. It has been widely ob- chaos for low-Reynolds-number flows. In particular, we have
served that the LS for spatiotemporal systems is an extensivdemonstrated that the nonlinear relaxation of the order pa-
measure[75] and is associated with a rescaling propertyrameter in nematogenic fluids and the coupling of nematic
[72-74—i.e., the LS of a subsystem, when suitably rescaledorder parameter to flow are key ingredients for rheological
can give rise to the LS of the whole syst¢fi®]. The volume chaos. The broad idea that nonlinearities in the stress and
rescaling property for the LS in spatiotemporally chaotic sysspatial inhomogeneity are essential is a feature that our work
tems also implies that extensiysize dependejptguantities  shares witH 9] and[37,38.
such as¥, andN,, scale with not only the system size but ~ We should note here that there could be more than one
also the subsystem size. Hence, instead of trying to study th@echanism at work in producing rheochaos. The mechanism
spectrum and related quantities in a system of large{sjze observed in our study is that the system exhibits chaos in its
one could confine the analysis to relatively small, more manlocal temporal dynamics, and then these localized regions
ageable subsystems of sixg—i.e., at space pointsin an  mutually interact with one another to generate spatial disor-
interval io<j<ig+Ng—1 (whereiy is an arbitrary reference der. Fielding and Olmstef9], however, have found spa-
point—and study the scaling of related quantities with sub-tiotemporally chaotic rheological behavior in a model system
system sizeN, [69]. Thus, instead of trying to implement the whose local dynamics does not show chaos, but incorporat-
correlation-dimension method for our spatially extendeding the spatial degrees of freedom makes it chaotic. Note
problem, we study the LE69,77]. Further, instead of study- also that in the parameter range we have studied so far the
ing systems of ever-increasing size, we look at subsystems @quilibrium phase of the system, in the absence of shear, is
sizeNg in a given large system of siZé. nematic. We made this choice to facilitate comparison with
For spatiotemporal chaos we expect to find that the numthe work of[34,35; a better choice from the point of view of
ber of positive Lyapunov exponents grows systematicallythe experiments on wormlike micelles would be to work in
with Ng. This is seen in Fig. 14. For both figures in Fig. 14, the isotropic phase, with a substantial susceptibility to nem-
we carry out the procedure with two different referenceatic ordering. We do not know if shear produces chaos in that
pointsiy and find essentially the same curves. Furthermore, isituation, although it seems likely. It is also worth investigat-
has been reported in many studies of spatiotemporally chdng whether nematics with stable flow alignment at low shear
otic system$72-74 that when calculating the subsystem LS rates can go chaotic at higher rates of flow. That the struc-
for increasing subsystem sikg, one finds that the Lyapunov tures in the transitional region between order and spatiotem-
exponents of two consecutive sizes are interleaved; i.e., theoral chaos are similar to those in directed percolation, as in
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some other systems undergoing the transition to spatiotentems such as under consideration, one could use these rheo-
poral chaos, is interesting and suggests a direction for po®ptical techniques and try to look for the irregularities in the
sible experimental tests. spatial distribution of band sizes and their temporal persis-
We now comment on experiments which can test some ofence, in a regime in the nematic phase where the micelles
the ideas proposed in this paper. The dynamics of the alignare not flow aligned. Further, very recently, spatiotemporal
ment tensor can be studied in rheo-optical experiments ofynamics of wormlike micelles in shear flow has been stud-
dichroism[ 78], flow birefringence and rheo-small-angle light joq using high-frequency ultrasonic velocimeti®3], and
;cattering[?g]. Flow birefringer)ce experiments cgrried Ut \arious dynamical regimes including slow nucleation and
in the last decade have shed light on shear banding and ofjyowth of a high-shear band and fast oscillations of the band

entational properties of micellar solutiof§]. Small-angle position have been observed, though the complex fast behav-
neutron scattering experiments, using a two-dimensional d&g reported is not chaotic.

tector, have also been used to analyze the orientational de-

grees of a micellar fluid in shear flow: the presence and pro- We thank G. Ananthakrishna and R. Pandit for very useful
portions of the isotropic and nematic phases under shear, aiscussions, and SERC, 1ISc for computational facilities.
well as the order parameter of the shear-induced nemati®l.D. acknowledges support from CSIR, India, and C.D. and
phase in such systems, have been stufligdIn order to  S.R. from DST, India through the Centre for Condensed Mat-
investigate rheochaotic behavior in space and time in syser Theory.
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