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With a view to understanding the “rheochaos” observed in recent experiments in a variety of orientable
fluids, we study numerically the equations of motion of the spatiotemporal evolution of the traceless symmetric
order parameter of a sheared nematogenic fluid. In particular we establish, by decisive numerical tests, that the
irregular oscillatory behavior seen in a region of parameter space where the nematic is not stably flow-aligning
is in fact spatiotemporal chaos. We outline the dynamical phase diagram of the model and study the route to the
chaotic state. We find that spatiotemporal chaos in this system sets in via a regime ofspatiotemporal intermit-
tency, with a power-law distribution of the widths of laminar regions, as in H. Chaté and P. Manneville, Phys.
Rev. Lett. 58, 112 s1987d. Further, the evolution of the histogram of band sizes shows a growing length scale
as one moves from the chaotic towards the flow-aligned phase. Finally we suggest possible experiments in
which one can observe the intriguing behaviors discussed here.
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I. INTRODUCTION

The intriguing rheological behavior of solutions of en-
tangled wormlike micelles has been the subject of a large
number of experimental and theoretical studies in recent
years f1,2g. These long, semiflexible cylindrical objects,
whose length distribution is not fixed by chemical synthesis
and can vary reversibly when subjected to changes in tem-
perature, concentration, salinity, and flow, have radii
,20–25 Å, persistence lengths,150 Å, and average
lengths up to several microns. Like polymers, they entangle
above a critical concentration and show pronounced vis-
coelastic effects. However, unlike covalently bonded poly-
mers, these “living polymers” can break and recombine re-
versibly in solutions, with profound consequences for stress
relaxation and rheology in the form of shear bandingf3–5g
and rheological chaosf6–12g. Measurementsf13,14g report
monoexponential relaxation of the viscoelastic response in
accordance with the Maxwell model of viscoelasticity. How-
ever, for wormlike micelles of CTATf7,15g at concentration
1.35 wt. %, the fit to the Maxwell model is very poor, and
the Cole-Cole plot deviates from the semicircular behavior
expected in Maxwellian systems and shows an upturn at high
frequencies. This deviation from Maxwellian behavior is
possibly due to the comparable values of time scales associ-
ated with reptationstrepd and reversible scissionstbd in this
system unlike in other wormlike micellar systems where the
differences in the time scalestb!trep lead to a “motional
averaging” effect. Further, in the concentrated regime, when
the mesh size of the entangled micellar network is shorter
than the persistence length of the micelles, orientational cor-
relations begin to appearf5g. In fact the nature of viscoelastic
response and the development of long-range orientational or-

der at high concentration play an important role in the non-
linear rheology of wormlike micelles, in particular in shear
banding transition and rheochaotic behaviorf10,11g.

In this paper we explore the dynamical phase diagram of
the model studied inf10,11g, with emphasis on the route to
spatiotemporal chaos. Our primary finding is summarized in
Fig. 1, which shows that this route is characterized by spa-
tiotemporal intermittency. Before presenting our results in
more detail, we cover some necessary background material.

The application of large stresses and strains on wormlike
micellar solutions can result in a variety of complex rheo-
logical behavior. Many dilute solutions of wormlike micelles
exhibit a dramatic shear thickening behavior when sheared
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FIG. 1. sColor onlined Space-time plotssspatial variation along
abscissa and time along ordinated of the shear stress forġ=4.0 and
sad lk=1.11 stime periodic, spatially homogeneousd, sbd to sdd, lk

=1.12,1.13,1.15sspatiotemporally intermittentd, sed lk=1.22 sspa-
tiotemporally chaoticd, sfd and sgd, lk=1.25 and 1.27schaotic to
aligningd, and shd lk=1.28 salignedd scolor map used: blackslow
shear stressd → red→ yellow shigh shear stressd. Slices taken from
a system of sizeL=5000.
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above a certain threshold rate, often followed by the onset of
a flow instabilityf16–18g. Experiments have observed shear-
banded flow in wormlike micellar solutions with formation
of bands or slip layers of different microstructures having
very different rheological propertiesf1,4,19–23g. The shear
banding transition is a transition between a homogeneous
and an inhomogeneous state of flow, the latter being charac-
terized by a separation of the fluid into macroscopic domains
or bands of high and low shear rates. It is associated with a
stress plateausabove a certain critical shear rateġc where the
shear stresss versus shear rateġ curve is a plateaud in the
nonlinear mechanical response.

More recently, rheological chaos or “rheochaos” has been
observed in experiments studying the nonlinear rheology of
dilute entangled solutions of wormlike micelles formed by a
surfactant CTAT f6,7,15,24g. Under controlled shear rate
conditions in the plateau regime, the shear stress and the first
normal stress difference show oscillatory and more compli-
cated, irregular time dependence. Analysis of the measured
time series shows the existence of a positive Lyapunov ex-
ponent and a finite noninteger correlation dimension charac-
teristic of deterministic chaos.

Occurrence of sustained oscillations often of an irregular
nature have also been reported in some other experiments on
complex fluids in shear flow. Salmonet al. f25,26g have
observed sustained oscillations of the viscosity near the non-
equilibrium, layering transition to the “onion” state in a lyo-
tropic lamellar system consisting of close compact assembly
of soft elastic spheresf25–27g. It has been conjectured that
the presence of oscillations in the viscosity is due to struc-
tural changes in the fluid, arising out of a competition be-
tween an ordering mechanism that is driven by stress and a
slow textural evolution which destroys the stress induced
ordered state. “Elastic turbulence” in highly elastic polymer
solutions f28g and “director turbulence” in nematic liquid
crystals in shear flowf29,30g are two other examples of
highly irregular low-Reynolds-number flows in complex flu-
ids. Both these phenomena are characterized by temporal
fluctuations and spatial disorder. Also worth noting is the
observation by Dasanet al. f31g of rheochaos in numerical
studies of sheared hard-sphere Stokesian suspensions.

Many complex fluids have nonlinear rheological constitu-
tive equations that cannot sustain a homogeneous steady
flow. This material instability occurs when the stress versus
strain-rate curve is nonmonotonic in nature, admitting mul-
tiple strain ratesġ at a common stresss. Particularly for
shear flow, it has been shownf32g that homogeneous flow is
linearly unstable in a region where the incremental shear
viscosity is negative—i.e.,ds /dġ,0. The system then un-
dergoes a separation into two coexisting macroscopic shear
bands at different shear rates arranged so as to match the
total imposed shear gradient. Systems where the dynamic
variabless or ġ are coupled to microstructural quantities
may admit many other possibilities—the flow may never be
rendered steady in time, or it may become spatially inhomo-
geneous even erratic or both. Fielding and Olmsted study
one such scenariof9g in the context of shear thinning worm-
like micelles where the flow is coupled to the mean micellar
length.

Significantly, Grossoet al. f33g and Rienäckeret al.
f34,35g find temporal rheochaos in the dynamics of the pas-

sively advected alignment tensor alone. They study the well-
established equations of hydrodynamics for a nematic order
parameter, with material constants corresponding to a situa-
tion where stable flow alignment is impossible. They con-
sider only spatiallyhomogeneousstatesf36g; i.e., they study
a set of ordinary differential equations for the independent
components of the nematic order parameter, evolving in the
presence of an imposed plane shear flow. They are thus not
in a position to explore the implications of the observed
chaos for shear banding.

Other theoretical approaches aimed at explaining the
rheological chaotic oscillations in a wormlike micellar fluid
include those by Cateset al. f8g. In the shear thickening
regime Cateset al. f8g propose a simple phenomenological
model for a fluid with memory and an underlying tendency
to form shear-banded flows, with only one degree of
freedom—the shear stress. Recently Aradian and Cates
f37,38g have studied a spatially inhomogeneous extension of
this model, with spatial variation in the vorticity direction.
Working at a constant average stressksl, they observe a rich
spatiotemporal dynamics, mainly seen in what they call “flip
flop shear bands”—a low and a high unstable shear band
separated by an interface and periodically flipping into one
another. For a certain choice of parameters they observe ir-
regular time-varying behavior, including spatiotemporal
rheochaos. As in our work, the key nonlinearities inf37,38g
arise from nonlinearities in the constitutive relation, not from
the inertial nonlinearities familiar from Navier-Stokes turbu-
lence. An important resultf37,38g is that they are able to find
complex flow behavior even when the stress versus shear-
rate curve is monotonic. In addition, they find rheochaos
even in a few-mode truncation where well-defined shear
bands cannot arise.

In this paper we study a minimal model to explain the
complex dynamics of orientable fluids, such as wormlike mi-
celles subjected to shear flow. We show that the basic mecha-
nism underlying such complex dynamical behavior can be
understood by analyzing the relaxation equations of the
alignment tensor of a nematogenic fluid, the underlying idea
being that wormlike micelles being elongated objects will
have, especially when overlap is significant, a strong ten-
dency to align in the presence of shear. We study equations
of motion of the nematic order parameter in the passive ad-
vection approximation—i.e., ignoring the effect of order pa-
rameter stresses on the flow profile which we take to be
plane Couette, incorporating spatial variation of the order
parameter. We calculate experimentally relevant quantities—
e.g., the shear stress and the first normal stress difference—
and show that, in a region of shear rates, the evolution of the
stresses is spatiotemporally chaotic. Further, in this region
the fluid is not homogeneously sheared but shows “dynamic
shear banding”sbanded flow with temporal evolution of
shear bandsd. A careful analysis of the space-time plots of the
shear stress shows the presence of a large number of length
scales in the chaotic region of the phase space of which only
a few dominant ones are selected as one approaches the
boundary of the aligned phase. Finally we explore the routes
to the spatiotemporally chaotic state. The transition from a
regular stateseither temporally periodic and spatially homo-
geneous, or spatiotemporally periodicd to a spatiotemporally
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chaotic one occurs via a series of spatiotemporally intermit-
tent states. By calculating the dynamic structure factor of the
shear stress and the distribution of the sizes of laminar do-
mains, we can distinguish this intermittent regime from the
spatiotemporally chaotic and the regular states occurring in
this model. Finally, we present a nonequilibrium phase dia-
gram showing regions where spatiotemporally regular, inter-
mittent and chaotic phases are found.

The paper is organized as follows. In the next section we
introduce the model and describe in detail the spatiotemporal
chaos that we observe, along with the routes to chaos. We
then conclude with a summary and discussions of our results.
Our main results on the spatiotemporal nature of rheochaos
have appeared in an earlier, shorter articlef10g.

II. SPATIOTEMPORAL RHEOLOGICAL
OSCILLATIONS AND CHAOTIC DYNAMICS

IN A NEMATOGENIC FLUID

A. Model and methods

Traditionally, complex rheological behaviors such as pla-
teau in the stress versus shear-rate curvef5g, shear banding
f3–5g, and “spurt” f39g have been understood through phe-
nomenological models for the dynamics of the stress such as
the Johnson-SegalmansJSd f40,41g model, which produce
nonmonotonic constitutive relations. In such equations the
stress evolves by relaxation or by coupling to the velocity
gradient. For example in the JS model the non-Newtonian
part of the shear stresss evolves according to

]s

]t
+ u · = s + sfV − akg + fV − akgTs = 2mk − t0

−1s,

s1d

with a stress relaxation timet0, an elastic modulusm, and a
parametera scalled the slip parameterd controlling the non-
affine deformation.u is the hydrodynamic velocity field and
V and k are the antisymmetric and symmetric parts of the
rate-of-deformation tensor. A useful point of view, and one
that unifies such phenomenological descriptions with dy-
namical models of ordering phenomena in condensed matter
physics, is that such equations of motion for the stress are
not fundamental but are derived from the underlying dynam-
ics of analignment tensoror local nematic order parameter
Q. Equations of motion for the latter are well established
f42–50g in terms of microscopic mechanicssPoisson brack-
etsd and local thermodynamics, and naturally include both
relaxation and flow-coupling terms of essentially the sort
seen, e.g., in the JS model. The contribution of the order
parameterQ to the stress tensor is also unambiguous within
such a framework, once the free-energy functionalFfQg
governingQ is specified. This approach is particularly ap-
propriate when the system in question contains orientable
entities, such as the elongated micelles of the experiments of
f6,7,15,24g. Thus, not worrying about properties specific to a
wormlike micelle—e.g., the breakage and recombination of
individual micelles—one can attempt to understand the prop-
erties of the wormlike-micelle solution by treating it as an
orientable fluid and analyzing the equations of motion of the

nematic order parameter. While properties specific to living
polymers might play an important role in their rheological
behavior, the generality of our order parameter description
encourages us to think that we have captured an essential
ingredient for rheochaos. As we shall see, this approach leads
naturally to terms nonlinear in the stress, absent in the usual
JS equations of motion, which lead ultimately to the chaos
with which this paper is concerned. Referencesf37,38g
found it necessary to modify the Johnson-Segalman equation
by including terms nonlinear in the stress in order to produce
chaos.

We now discuss the relaxation equation of the alignment
tensor characterizing the molecular orientation of a nematic
liquid crystal in shear flow. These equations were derived by
various groupsf42–45,47–50g, using different formalisms re-
sulting in broadly similar though not in all cases identical
equations of motion. We work with the equations off47,51g,
so as to make contact with the recent studiesf52g of purely
temporal chaos in the spatially homogeneous dynamics of
nematic liquid crystals in flow. These authors have extended
their analysisf34,35g to include biaxially ordered steady and
transient states. Their work has revealed a transition from a
kayaking-tumbling motion to a chaotic one via a sequence of
tumbling and wagging states. Both intermittency and period
doubling routes to chaos have been found.

A nematogenic fluid is comprised of orientable objects,
such as rods or disks, with the orientation of theith particle
denoted by the unit vectorn̂i. In the nematic phase there is an
average preferred direction of these molecules, which distin-
guishes it from the isotropic phase where there is no such
preferred direction. The order parameter that measures such
apolar anisotropy is the traceless symmetric “alignment ten-
sor” or nematic order parameter

Qabsr d =
1

N
o
i=1

N KSnainbi −
1

3
dabDLdsr − r id, s2d

built from the second moment of the orientational distribu-
tion function. By construction, it is invariant undern̂i →−n̂i
and vanishes when then̂i are isotropically distributed.

Since nematic fluids possess long-range directional order,
the presence of spatial inhomogeneities would result in de-
formations of the director field and hence cost elastic energy.
In general when the variable describing an ordered phase is
varying in space, the free-energy density will have terms
quadratic in=Q. Static mechanical equilibrium forQ corre-
sponds to extremizing the Landau–de Gennes free-energy
functional

FfQg =E d3xFA

2
Q:Q −Î2

3
BsQ ·Qd:Q +

C

4
sQ:Qd2

+
G1

2
= Q ] = Q +

G2

2
= ·Q · = ·QG , s3d

with phenomenological parametersA, B, and C governing
the bulk free-energy difference between isotropic and nem-
atic phases, andG1 and G2 related to the Frank elastic con-
stants of the nematic phase. A macroscopically oriented nem-
atic with axis n̂ has Q=ssn̂n̂− I /3d swhere I is the unit
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tensord which defines the conventionalsscalard nematic order
parameters. For A small enough but positive,F has minima
at s=0 and ats=s0Þ0. The minimum ats=s0 is lower than
the one ats=0 whenA,A* ;2B2/9C which corresponds to
the smean-fieldd isotropic-nematic transition. The functional
F plays a key role in the dynamics ofQ as well. The equa-
tion of motion forQ is

]Q
]t

+ u · = Q = t−1G + sa0k + a1k ·QdST + V ·Q − Q · V,

s4d

where the subscript ST denotes symmetrization and trace re-
moval. u is the hydrodynamic velocity field,k;s1/2df=u
+s=udTg andV;s1/2df=u−s=udTg the shear-rate and vor-
ticity tensors, respectively. The flow geometry imposed is
plane Couette with velocityu= ġyx̂ in the x̂ direction, gradi-
ent in theŷ direction, and vorticity in theẑ direction.t is a
bare relaxation time;a0 anda1 are parameters related to flow
alignment, originating in molecular shapes.G, the molecular
field conjugate toQ, is given by

G ; − sdF/dQdST = − fAQ − Î6BsQ ·QdST + CQQ:Qg

+ G1¹
2Q + G2s= = ·QdST s5d

to the lowest order in a series expansion in powers of=Q.
SinceQ is a traceless and symmetric second rank 333

tensor, it has five independent components. Accordingly,
when the equation of motion of the alignment tensor is ap-
propriately scaled, it is possible to express it in the orthonor-
malized basis

Q = o
i

aiTi ,

T0 = Î3/2sẑẑdST,

T1 = Î1/2sx̂x̂ − ŷŷd,

T2 = Î2sx̂ŷdST,

T3 = Î2sx̂ẑdST,

T4 = Î2sŷẑdST, s6d

and study the equations of motion of each of the components
ak, k=0,1, . . . ,4f34,35g, projected out.

It has been observed in the absence of spatial variation
that depending on the model parameters entering the equa-
tions, the order parameter equations can have different char-
acteristic orbitsf34,35g. Possible in-plane states, where, as
the name suggests, the director is in the plane of flow deter-
mined by the direction of the flow and its gradient, and the
order parameter componentsa3, a4=0 are “tumbling” sT,
in-plane tumbling of the alignment tensord, “wagging” sW,
in-plane waggingd, and “aligning” sA, in-plane flow align-
mentd states. Out-of-plane solutions, characterized by non-
zero values ofa3 anda4, observed are “kayaking tumbling”
sKT, a periodic orbit with the projection of the main director

in the shear plane describing a tumbling motiond, “kayaking
wagging” sKW, a periodic orbit with the projection of the
main director in the shear plane describing a wagging mo-
tiond, and finally “complex” sCd characterized by compli-
cated motion of the alignment tensor. This includes periodic
orbits composed of sequences of KT and KW motion and
chaotic orbits characterized by a positive largest Lyapunov
exponent.

A solution phase diagram based on the various in-plane
and out-of-plane states forA=0 anda1=0 is given inf35g. It
is observed thata1Þ0 gives similar resultsf12g. As control
parameters, we uselk;−s2/Î3da0 related to the tumbling
coefficient in Leslie-Ericksen theoryf34,35g and the shear
rate ġ to study the phase behavior of this system.

It is observed in experiments that the flow curvesshear
stress versus strain rated of a wormlike micellar system in
shear flow has a rather large plateau region where banded
flow is believed to occur, and a study of the dynamics of the
traceless symmetric order parameterQ fEq. s4dg for a
sheared nematogenic system that allows spatial variation is
likely to capture this feature. As we shall see later the shear
banding observed in such systems is dynamic in nature and
is an important element in the spatiotemporal rheochaos we
observe.

Hereafter we express the equations in the orthonormalized
basis as in Eq.s6d. As in f34,35g, we rescale time by the
linearized relaxation timet /A* at the mean-field isotropic-
nematic transition andQ as well by its magnitude at that
transition. We have seta1=0 in our analysis as it seems to
have little effect on the dynamical behavior of the system
f12,34,35g in the parameter range studied. Further, we
chooseA=0 throughout, to make a correspondence to the
ordinary differential equationsODEd studies off34,35g. This
places the system well in the nematic phase at zero shear, in
fact at the limit of metastability of the isotropic phase. Dis-
tances are nondimensionalized by the diffusion length con-
structed out ofG1 and t /A* . The ratioG2/G1 is therefore a
free parameter which we have set to unity in our study.

The resulting equations are then numerically integrated
using a fourth-order Runge-Kutta scheme with a fixed time
step sDt=0.001d. For all the results quoted here a symme-
trized form of the finite-difference scheme involving nearest
neighbors is used to calculate the gradient terms. Thus

¹2f i =
f i+1 + f i−1 − 2f i

sDxd2 ,

¹ f i =
f i+1 − f i−1

2Dx
. s7d

We have checked that our results are not changed if smaller
values ofDt are used. We have further checked that the re-
sults do not change if the grid spacing is changedsi.e., Dx is
decreasedd and more neighbors to the left and right of a
particular site in question are used to calculate the derivative.
This gives us confidence that the results quoted here do re-
flect the behavior of a continuum theory and are not artifacts
of the numerical procedure used. We use boundary condi-
tions with the director being normal to the walls. With this,
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we discard the first 63106 time steps to avoid any possibly
transient behavior. We monitor the time evolution of the sys-
tem for the next 53106 time stepssi.e., t=5000d, recording
configurations after every 103 steps. We have carried out the
study with system sizes ranging fromL=100 toL=5000.

Further, we calculate the contribution of the alignment
tensor to the deviatoric stressf35,53–55g sOP~a0G
−a1sQ ·GdST where G, defined in Eq.s5d, is the nematic
molecular field, and the total deviatoric stress issOP plus the
bare viscous stress. Since the latter is a constant within the
passive advection approximation, we can study the rheology
by looking atsOP alone. We are aware of the importance of
allowing the velocity profile to alter in response to the
stresses produced by the order parameter field, and this is
currently under studyf56g.

While generating the results for the time-series analysis
for the Lyapunov spectrum, we run the simulation untillt
=20000, for anL=5000 sized system, recording data at
space points at intervals ofl =10. We monitor the space-time
evolution of the shear stresssthexy component of the devia-
toric stresssOPd sreferred to asSxyd and the first and second
normal stress differencesSxx−Syy andSyy−Szz, respectively.

B. Results and discussion

1. Phase behavior and dynamic shear banding

In view of prior work on the observation of chaos in the
local equations of motion of the alignment tensorfspatially
homogeneous version of Eq.s4dg by Rienäckeret al. f34,35g
we address the following question: Is the phase diagramsin
the ġ-lk planed affected by allowing spatial variation of the
order parameter? We answer this question in the affirmative,
and show that theC region of the phase diagram of
Rienäckeret al. f34,35g corresponding to “complex” or cha-
otic orbitsbroadensupon incorporating the spatial degrees of
freedom. In other words, there exist parameter ranges where
the spatially homogeneous system is not chaotic, but chaos
sets in once inhomogeneity is allowed. A result of particular
interest is the observation of “spatiotemporally intermittent”
sSTId states in a certain range of parametersen routefrom
the regular to the spatiotemporally chaotic regimes. Such be-
havior is by definition not accessible in the evolution equa-
tions of the spatially homogeneous alignment tensor studied
in f34,35g. It would be of interest to find chaotic regimes
where only two of the five independent components ofQ are
nonzero. Since the number of degrees of freedom per space
point would then be 2, such chaos would clearly be a conse-
quence of spatial coupling. We have not located such a re-
gime so far.

Local phase portraitssorbits obtained when various pairs
of order parameter components are plotted against each
otherd illustrate the chaotic or orderly nature of the on-site
dynamics. Shown in the right panels of Fig. 2 are the local
phase portraitssa1 vs a0d for a particular pointx0 for various
values of the tumbling parameterlk, obtained by holding the
shear rate fixed atġ=3.5. We have checked that the character
of the phase portrait remains intact upon going from one
space point to another though in the chaotic regime there is
no phase coherence between two such portraits. A closed

curve corresponding to a limit cycle is seen atlk=1.27,
while at lk=1.3 scorresponding to theC region of the phase
spaced it is space filling. Atlk=1.35, as one approaches the
region where the director aligns with the flow the points
reduce to those on a line and eventually in the aligning re-
gime slk=1.365d where the director has already aligned with
the flow it is represented by a point. This assures us that the
local dynamics in the spatially extended case is similar to
that of the ODE’s off34,35g.

We also construct the spatial analogues of these portraits;
i.e., we allow the system to evolve until a sufficiently long
time ssay,t0d and then record the spatial series. Again we get
a limit cycle in theT region off34,35g, followed by a space-
filling curve in the C region. As we go from the chaotic
towards the aligning regime, the points arrange themselves
on a line, and finally in the aligned regime one only obtains
a point, corresponding to a spatially uniform state. This is
shown in the left panel for Fig. 2. One should note here that
the T regime here corresponds to spatiotemporally periodic
states whereas in other regions of parameter space one does
observe states that are temporally periodic but spatially ho-
mogeneousfFig. 1sadg and for such states the local phase

FIG. 2. Plots showinga0sx,t0d vs a1sx,t0d sleft paneld and
a0sx0,td vs a1sx0,td sright paneld for periodic fsad,sedg, chaotic
fsbd,sfdg, sC→Ad fscd,sgdg, and alignedfsdd,shdg regimes.

FIG. 3. sColor onlined Space-time behavior of the shear stress in
the chaotic regime,ġ=3.678 andlk=1.25. Slice taken from a sys-
tem of sizeL=5000.
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portrait corresponding to spatial variation at a fixed time
would be a point and not be a closed curve.

We now turn to the detailed spatiotemporal structure of
the phase diagram of this system. We find many interesting
phases including spatiotemporally chaotic states with a broad
distribution of length scalesfFigs. 1sed and 3g, spatiotempo-
rally irregular states in which a few length scales are picked
up by the systemfFigs. 1sfd, 1sgd, and 4g, a flow aligned
phasefFig. 1shdg and also regular statessRd showing period-
icity in both in time and spacesFig. 5d or that are periodic in
time and homogeneous in spacefFig. 1sadg. In addition to
these states we find the presence of STI statesfFigs. 1sbd and
1scdg. In regions of parameter space we have also observed
spatially and temporally ordered domains coexisting with
patches characteristic of STI statessFig. 6d. The parameter
values at which these are seen correspond well with those
obtained from the phase diagram off34,35g.

Let us now focus on the parameter region labeledC or
“complex” in f34,35g, where we find spatiotemporal chaos.
This regime is characterized by the dynamic instability of
shear bands as seen in Fig. 3 which shows several distinct
events, such as the persistence, movement, and abrupt disap-
pearance of shear bands. It is found that the typical length
scale at which banding occurs is a fraction of the system size,
though it follows a broad distribution. As one moves closer
to the phase boundary separating the spatiotemporally cha-

otic state from stable flow alignment, the bands become
more persistent in time and larger in spatial extent as shown
in Fig. 4.

We have computed the distribution of band sizes or spatial
“stress drops” and looked for the presence of dominant
length scales in the system in order to obtain a better under-
standing of the disorderly structure of the shear bands as seen
in Fig. 3 and compared it with the behavior seen close to the
phase boundarysFig. 4d. Another important reason for such
an analysis is to rule out any hidden periodicity that might be
present in the space-time profiles of shear stress as shown in
Fig. 3.

The “stress drop” calculation is outlined below. At a given
time ssay, tid, we define a thresholdS0xy, a little above the
global meankSxyly,t, and map the spatial configuration to a

space-time array of ±1:S̃xy=sgnsSxy−S0xyd. Figure 7 shows
the histogram of the spatial length of intervals corresponding
to the1state, for the chaotic and the chaotic to aligningsC
→Ad regimes. We have considered configurations extending
over L=2500 spatial points, and the statistics is summed
over configurations sampled at 5000 timessi.e., i =1,5000d.

FIG. 4. sColor onlined Space-time behaviorssurface plotsd of the
shear stress in the chaotic to aligning regime,ġ=4.05 andlk

=1.25. Slice taken from a system of sizeL=5000.

FIG. 5. sColor onlined The space-time correlation function in a
regime which is both spatially and temporally periodic.ġ=3.4, l
=1.29.

FIG. 6. sColor onlined Space-time evolution of the shear stress
showing coexistence of different dynamical regimes atġ=3.9, l
=1.12.

FIG. 7. sColor onlined Spatial distribution of “stress drops”scor-
responding to residence intervals in which the shear stress is above
a thresholdS0xy=0.8d in the chaoticsad and C→A sbd,scd,sdd re-
gimes.ġ=4.0 andlk=1.22 sad,1.24 sbd,1.25 scd, 1.27 sdd.
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As expected, the distribution of band lengths in the spa-
tiotemporally chaotic regime is fairly broad and roughly ex-
ponential in shape, whereas as one approaches the aligning
regime, the distribution is peaked about a few dominant
length scales. Also, note that as one passes from the chaotic
to the chaotic-to-aligningsC→Ad state, the dominant length
scale associated with the shear bands increases.

2. Route to the spatiotemporally chaotic state

We now monitor the approach to the spatiotemporally
chaotic state as a function of the tumbling parameterlk, for
a fixed value ofġ s=3.8d. We observe a sequence of states. At
low lk s1.0d, the shear stress is periodic in time and homo-
geneous in space, Fig. 1sad. As we increaselk, we come
across states which are both spatially and temporally disor-
dered,fFigs. 1sbd and 1scdg consisting of propagating distur-
bances in a background of highly irregular local structures,
which resemble geometric patterns seen in probabilistic cel-
lular automataf57g. The borders of the ordered regions
evolve like fronts towards each other until this region even-
tually disappears in the chaotic background. These states are
typical of what is known as STIf58–60,62g. Indeed, it is
suggestedf60,65g that the transition to fully developed spa-
tiotemporal chaos generally occurs via this admixture of
complex irregular structuresshigh shear stressd intermittently
present with more regular low shear regions. In contrast to
low-dimensional systems where intermittency is restricted to
temporal behavior, STI manifests itself as a sustained regime
where coherent-regular and disordered-chaotic domains co-
exist and evolve in space and time. Earlier studies of the
onset of spatiotemporal chaosf58–63g suggest a relation to
directed percolationsDPd. Evidence for DP-like behavior in
spatiotemporal intermittency mostly comes from studies of
coupled map latticessCMLd f62g. Such processes are mod-
eled as a probabilistic cellular automaton with two states per
site, inactive and active, corresponding respectively to the
laminar and chaotic domains in the case of STI. Studies find
that in the STI regime, a laminarsinactived site becomes
chaoticsactived at a particular time only if at least one of its
neighbors was chaotic at an earlier time, there being no spon-
taneous creation of disordered-chaotic sites. Hence a disor-
dered site can either relax spontaneously to its laminar state
or contaminate its neighbors. This feature is analogous to
directed percolation, and one consequence of this picture is
the presence of an absorbing state: in STI studies of CML’s,
once all the sites relax spontaneously to the laminar state, the
system gets trapped in this state forever; thus, the laminar
state in STI corresponds to an absorbing state in DP. This
analogy predicts that STI should show critical behavior simi-
lar to that associated with DP—power-law growth of chaotic
domains, and characteristic static and spreading exponents.
There is however still no uniformity of opinion on whether
spatiotemporal intermittency belongs to the same universal-
ity class as DP as characterized by the critical exponents of
the DP class. Some studies of coupled map latticesf58g,
partial differential equationssPDE’sd f65,67g and experi-
mentsf66g suggest that, though the critical behavior in STI is
visually similar to DP, the exponents measured in STI are not
universal. Other investigations that have evaluated the expo-

nents at the onset of spatiotemporal intermittency in coupled
circle map latticesf62g and in experimental systemsf64g
claim that this transition indeed falls in the universality class
of directed percolation. Our aim in this context is to macro-
scopically characterize the disordered structures in the spa-
tiotemporally intermittent state in terms of the distribution of
the widths of the laminar domains and study the qualitative
connection between STI and DP. Accordingly, following the
analysis in Chaté and Mannevillef58,65g we study the decay
of the distribution of laminar domains at the onset of inter-
mittency and far away from this onset. At each time step, the
spatial series of the shear stress values are scanned, and the
widths of the laminar regionssregions for which the spatial
gradient is less than a sufficiently small valued are measured
and inserted into a histogram. This process is then cumulated
over time, giving the distribution of laminar domains. Previ-
ous studies have found that at the onset of spatiotemporal
intermittency, this distribution has a power-law decayswith a
power ranging from 1.5 to 2.0 in CML studiesf58g and ex-
perimentsf66g and 3.15 in a variant of the Swift-Hohenberg
equationf65gd, while away from the onset, it has an expo-
nential decay. We find a similar behavior. In our work, at a
representative pointsġ=3.9,lk=1.116d at the onset of inter-
mittency, the distribution of laminar domains has a power-
law decaysFig. 8d, with an exponent of 1.86 and a standard

FIG. 8. Decay of the distribution of laminar domains at the
onset of the spatiotemporal intermittent regimesrepresented by
circlesd on a log-log scale. The solid line is a power-law fit to the
data with an exponentcSTI=1.86±0.05.

FIG. 9. Decay of the distribution of laminar domains away from
the above-mentioned onset and well within the STI regimesrepre-
sented by circlesd on a semilogarithmic scale.
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deviation from the data of 0.05. Away from this onsetsġ
=4.0,lk=1.13d, the decay is close to exponential as evident
from Fig. 9.

Another way of characterizing the time evolution of the
coherent and disorderly regions in the spatiotemporally inter-
mittent states of Figs. 1sbd and 1scd is to calculate the dy-
namical structure factor for the shear stress. Figure 10 shows
the dynamic structure factor characteristic of this regime.
When the system is in the flow-aligned regimeSsk,vd has a
peak atk=0 andv=0. On the other hand, in the spatiotem-
porally intermittent state, the dominant weight inSsk,vd is
on lines ofv~ ±k, implying disturbances with a characteris-
tic speed of propagation. The front velocity of the cellular-
automata-like patterns seen in the space time plots in this
regime can be calculated from the slope of these lines. In
Figs. 1sdd and 1sed, the system is in the chaotic regime. As
we pass on from the chaotic towards the aligning regime,
more regular structures are seen to evolvefFigs. 1sfd and
1sgdg; the shear bands grow in spatial extent and are more
long lived. Figure 1shd shows a snapshot of the shear stress
in the flow-aligned regime. Figures 11 and 12 show the dy-
namical structure factor in the spatiotemporally periodic re-
gime and close to the chaotic-aligning phase boundary, re-
spectively.

Finally, we present the phase diagram coming out of the
previous analysis as in Fig. 13. The phase diagram was cal-
culated by monitoring the shear-stress profile as well as vari-
ous components of the nematic order parametersas they are
strikingly different for the different phases, which is also
borne out by the difference in the corresponding dynamic
structure factorsd as a function of the shear rateġ and the
tumbling parameterlk.

3. Lyapunov structure of the chaotic state

Next we try to characterize the chaotic states in our study.
In studying dynamics of spatiotemporal systemsf68g, one
needs to establish whether the system is truly in a spatiotem-
porally chaotic regime or can be described by a model with
only a fewsdominantd independent modes. So from the mul-
tivariate time-series generated by such systems, one tries to
compute quantities analogous to the invariant measures used
to characterize low-dimensional chaos. However, true spa-
tiotemporal chaos corresponds to spatially high-dimensional
attractors, with dimension growing with the system’s spatial
extent, and the estimation of invariants such as the correla-

FIG. 10. sColor onlined Pseudocolor plot of the dynamic struc-
ture factorSsky,vd in the “STI” sspatiotemporally intermittentd re-
gime. Color at any point; logarithm sto base 10d of the value of
Ssky,vd at that point.

FIG. 11. sColor onlined Dynamic structure factor in the spa-
tiotemporally periodic regime. The peridicity in time and space is
borne out by the straight lines parallel to the frequency and wave-
vector axes, respectively.

FIG. 12. sColor onlined Dynamic structure factor in theC→A
regime. The system has almost relaxed to a steady state in time, and
spatially there are large domains that are flow aligned.

FIG. 13. sColor onlined Phase diagram of the system in thelk vs
ġ plane, showing regular, i.e., periodic in time and either periodic or
homogeneous in spacesRd, chaotic sCd, aligning sAd, and spa-
tiotemporally intermittentsSTId regimes. Note the reentrant chaotic
behavior as a function ofġ in a narrow region oflk and as a
function of lk for ġ,3.6.
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tion dimension can be quite problematic. Indeed we find that
the chaos that we observe is quite high dimensionalsembed-
ding dimensionf69,70g mù10d. A reliable estimate of the
correlation dimensions can be made only from a data train so
long as to require prohibitively large computational times to
generate.

An alternative approach is to study the Lyapunov spec-
trum sLSd. For a discreteN-dimensional dynamical system,
there existN Lyapunov exponents corresponding to the rates
of expansion and/or contraction of nearby orbits in the tan-
gent space in each dimension. The LS is then the collection
of all the N Lyapunov exponentsli , i =1:N, arranged in
decreasing order. The LS is very useful in the characteriza-
tion of a chaotic attractor. Useful quantities that can be cal-
culated from the LS are the number of positive Lyapunov
exponentsNl+

and sum of the positive Lyapunov exponents
ol+

. In fact the sum of the positive Lyapunov exponents
provides an upper bound for the so-called Kolmogorov-Sinai
entropyh which quantifies the mean rate of growth of uncer-
tainty in a system subjected to small perturbations. In many
cases,h is well approximated by the sumol+

f71g. Both
these quantities have been found to scale extensively with
system size in spatiotemporally chaotic systems. For dy-
namical systems with only a few effective degrees of free-
dom, it is straightforward to compute the LS. However, for
extended systems with a large number of degrees of freedom,
even a few hundred, it runs into severe difficulties because of
the inordinately large computing time and memory space re-
quired. In such situations it is important to make use of tech-
niques that derive information about the whole system by
analyzing comparatively small systems with exactly the
same dynamical behaviorf72–74g. It has been widely ob-
served that the LS for spatiotemporal systems is an extensive
measuref75g and is associated with a rescaling property
f72–74g—i.e., the LS of a subsystem, when suitably rescaled,
can give rise to the LS of the whole systemf76g. The volume
rescaling property for the LS in spatiotemporally chaotic sys-
tems also implies that extensivessize dependentd quantities
such asol+

andNl+
scale with not only the system size but

also the subsystem size. Hence, instead of trying to study the
spectrum and related quantities in a system of large-sizeN,
one could confine the analysis to relatively small, more man-
ageable subsystems of sizeNs—i.e., at space pointsj in an
interval i0, j , i0+Ns−1 swhere i0 is an arbitrary reference
pointd—and study the scaling of related quantities with sub-
system sizeNs f69g. Thus, instead of trying to implement the
correlation-dimension method for our spatially extended
problem, we study the LSf69,77g. Further, instead of study-
ing systems of ever-increasing size, we look at subsystems of
sizeNs in a given large system of sizeN.

For spatiotemporal chaos we expect to find that the num-
ber of positive Lyapunov exponents grows systematically
with Ns. This is seen in Fig. 14. For both figures in Fig. 14,
we carry out the procedure with two different reference
pointsi0 and find essentially the same curves. Furthermore, it
has been reported in many studies of spatiotemporally cha-
otic systemsf72–74g that when calculating the subsystem LS
for increasing subsystem sizeNs, one finds that the Lyapunov
exponents of two consecutive sizes are interleaved; i.e., the

ith Lyapunov exponentli for the subsystem of sizeNs lies
between theith andsi +1dth Lyapunov exponent of the sub-
system of sizeNs+1. A direct consequence of this property is
that with increasing subsystem sizeNs, the largest Lyapunov
exponent will also increase, asymptotically approaching its
value corresponding to the case when the subsystem size is
of the order of the system size. This trend is clearly seen in
Fig. 14sbd.

C. Conclusions

In summary, we have proposed a mechanism by which
one might explain the chaotic and irregular rheological re-
sponse of soft materials in shear flow, wormlike micelles in
particular. The main idea brought out in this paper is that the
coupling of orientational degrees of freedom in a complex
fluid with hydrodynamic flow can lead to spatiotemporal
chaos for low-Reynolds-number flows. In particular, we have
demonstrated that the nonlinear relaxation of the order pa-
rameter in nematogenic fluids and the coupling of nematic
order parameter to flow are key ingredients for rheological
chaos. The broad idea that nonlinearities in the stress and
spatial inhomogeneity are essential is a feature that our work
shares withf9g and f37,38g.

We should note here that there could be more than one
mechanism at work in producing rheochaos. The mechanism
observed in our study is that the system exhibits chaos in its
local temporal dynamics, and then these localized regions
mutually interact with one another to generate spatial disor-
der. Fielding and Olmstedf9g, however, have found spa-
tiotemporally chaotic rheological behavior in a model system
whose local dynamics does not show chaos, but incorporat-
ing the spatial degrees of freedom makes it chaotic. Note
also that in the parameter range we have studied so far the
equilibrium phase of the system, in the absence of shear, is
nematic. We made this choice to facilitate comparison with
the work off34,35g; a better choice from the point of view of
the experiments on wormlike micelles would be to work in
the isotropic phase, with a substantial susceptibility to nem-
atic ordering. We do not know if shear produces chaos in that
situation, although it seems likely. It is also worth investigat-
ing whether nematics with stable flow alignment at low shear
rates can go chaotic at higher rates of flow. That the struc-
tures in the transitional region between order and spatiotem-
poral chaos are similar to those in directed percolation, as in

FIG. 14. Sum of positive Lyapunov exponentssleft paneld, num-
ber of positive Lyapunov exponentssmiddle paneld, and the largest
Lyapunov exponentsright paneld as functions of subsystem sizeNs,
for ġ=3.678,lk=1.25. Embedding dimension for the time series of
each space point is 10si0=101; see textd.
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some other systems undergoing the transition to spatiotem-
poral chaos, is interesting and suggests a direction for pos-
sible experimental tests.

We now comment on experiments which can test some of
the ideas proposed in this paper. The dynamics of the align-
ment tensor can be studied in rheo-optical experiments on
dichroismf78g, flow birefringence and rheo-small-angle light
scatteringf79g. Flow birefringence experiments carried out
in the last decade have shed light on shear banding and ori-
entational properties of micellar solutionsf5g. Small-angle
neutron scattering experiments, using a two-dimensional de-
tector, have also been used to analyze the orientational de-
grees of a micellar fluid in shear flow: the presence and pro-
portions of the isotropic and nematic phases under shear, as
well as the order parameter of the shear-induced nematic
phase in such systems, have been studiedf5g. In order to
investigate rheochaotic behavior in space and time in sys-

tems such as under consideration, one could use these rheo-
optical techniques and try to look for the irregularities in the
spatial distribution of band sizes and their temporal persis-
tence, in a regime in the nematic phase where the micelles
are not flow aligned. Further, very recently, spatiotemporal
dynamics of wormlike micelles in shear flow has been stud-
ied using high-frequency ultrasonic velocimetryf23g, and
various dynamical regimes including slow nucleation and
growth of a high-shear band and fast oscillations of the band
position have been observed, though the complex fast behav-
ior reported is not chaotic.
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